Pages

Monday 16 February 2015

what is swine flu, how to infect to humans

What is the swine flu?

Swine flu (swine influenza) is a respiratory disease caused by viruses (influenza viruses) that infect the respiratory tract of pigs, resulting in nasal secretions, a barking cough, decreased appetite, and listless behavior. Swine flu produces most of the same symptoms in pigs as human flu produces in people. Swine flu can last about one to two weeks in pigs that survive. Swine influenza virus was first isolated from pigs in 1930 in the U.S. and has been recognized by pork producers and veterinarians to cause infections in pigs worldwide. In a number of instances, people have developed the swine flu infection when they are closely associated with pigs (for example, farmers, pork processors), and likewise, pig populations have occasionally been infected with the human flu infection. In most instances, the cross-species infections (swine virus to man; human flu virus to pigs) have remained in local areas and have not caused national or worldwide infections in either pigs or humans. Unfortunately, this cross-species situation with influenza viruses has had the potential to change. Investigators decided the 2009 so-called "swine flu" strain, first seen in Mexico, should be termed novel H1N1 flu since it was mainly found infecting people and exhibits two main surface antigens, H1 (hemagglutinin type 1) and N1 (neuraminidase type1). The eight RNA strands from novel H1N1 flu have one strand derived from human flu strains, two from avian (bird) strains, and five from swine strains.

Swine flu is transmitted from person to person by inhalation or ingestion of droplets containing virus from people sneezing or coughing; it is not transmitted by eating cooked pork products. The newest swine flu virus that has caused swine flu is influenza A H3N2v (commonly termed H3N2v) that began as an outbreak in 2011. The "v" in the name means the virus is a variant that normally infects only pigs but has begun to infect humans. There have been small outbreaks of H1N1 since the pandemic; a recent one is in India where at least three people have died.

What causes swine flu?


The cause of the 2009 swine flu was an influenza A virus type designated as H1N1. In 2011, a new swine flu virus was detected. The new strain was named influenza A (H3N2)v. Only a few people (mainly children) were first infected, but officials from the U.S. Centers for Disease Control and Prevention (CDC) reported increased numbers of people infected in the 2012-2013 flu season. Currently, there are not large numbers of people infected with H3N2v. Unfortunately, another virus termed H3N2 (note no "v" in its name) has been detected and caused flu, but this strain is different from H3N2v. In general, all of the influenza A viruses have a structure similar to the H1N1 virus; each type has a somewhat different H and/or N structure.

Why is swine flu now infecting humans?


Many researchers now consider that two main series of events can lead to swine flu (and also avian or bird flu) becoming a major cause for influenza illness in humans.

First, the influenza viruses (types A, B, C) are enveloped RNA viruses with a segmented genome; this means the viral RNA genetic code is not a single strand of RNA but exists as eight different RNA segments in the influenza viruses. A human (or bird) influenza virus can infect a pig respiratory cell at the same time as a swine influenza virus; some of the replicating RNA strands from the human virus can get mistakenly enclosed inside the enveloped swine influenza virus. For example, one cell could contain eight swine flu and eight human flu RNA segments. The total number of RNA types in one cell would be 16; four swine and four human flu RNA segments could be incorporated into one particle, making a viable eight RNA-segmented flu virus from the 16 available segment types. Various combinations of RNA segments can result in a new subtype of virus (this process is known as antigenic shift) that may have the ability to preferentially infect humans but still show characteristics unique to the swine influenza virus (see Figure 1). It is even possible to include RNA strands from birds, swine, and human influenza viruses into one virus if a single cell becomes infected with all three types of influenza (for example, two bird flu, three swine flu, and three human flu RNA segments to produce a viable eight-segment new type of flu viral genome). Formation of a new viral type is considered to be antigenic shift; small changes within an individual RNA segment in flu viruses are termed antigenic drift (see figure 1) and result in minor changes in the virus. However, these small genetic changes can accumulate over time to produce enough minor changes that cumulatively alter the virus' makeup over time (usually years).

Second, pigs can play a unique role as an intermediary host to new flu types because pig respiratory cells can be infected directly with bird, human, and other mammalian flu viruses. Consequently, pig respiratory cells are able to be infected with many types of flu and can function as a "mixing pot" for flu RNA segments (see figure 1). Bird flu viruses, which usually infect the gastrointestinal cells of many bird species, are shed in bird feces. Pigs can pick these viruses up from the environment, and this seems to be the major way that bird flu virus RNA segments enter the mammalian flu virus population. Figure 1 shows this process in H1N1, but the figure represents the genetic process for all flu viruses, including human, swine, and avian strains.

What is the treatment for swine flu?



The best treatment for influenza infections in humans is prevention by vaccination. Work by several laboratories has produced vaccines. The first H1N1 vaccine released in early October 2009 was a nasal spray vaccine that was approved for use in healthy individuals ages 2-49. The injectable vaccine, made from killed H1N1, became available in the second week of Oct. 2009. This vaccine was approved for use in ages 6 months to the elderly, including pregnant females. Both of these vaccines were approved by the CDC only after they had conducted clinical trials to prove that the vaccines were safe and effective. A new influenza vaccine preparation is the intradermal (trivalent) vaccine is available; it works like the shot except the administration is less painful. It is approved for ages 18-64 years.

Almost all vaccines have some side effects. Common side effects of H1N1 vaccines (alone or in combination with other flu viral strains) are typical of flu vaccines used over many years and are as follows:

    Flu shot: Soreness, redness, minor swelling at the shot site, muscle aches, low-grade fever, and nausea do not usually last more than about 24 hours.
    Nasal spray: runny nose, low-grade fever, vomiting, headache, wheezing, cough, and sore throat
    Intradermal shot: redness, swelling, pain, headache, muscle aches, fatigue

The flu shot (vaccine) is made from killed virus particles so a person cannot get the flu from a flu shot. However, the nasal spray vaccine contains live virus that have been altered to hinder its ability to replicate in human tissue. People with a suppressed immune system should not get vaccinated with the nasal spray. Also, most vaccines that contain flu viral particles are cultivated in eggs, so individuals with an allergy to eggs should not get the vaccine unless tested and advised by their doctor that they are cleared to obtain it. Like all vaccines, rare events may occur in some rare cases (for example, swelling, weakness, or shortness of breath). If any symptoms like these develop, the person should see a physician immediately.

Two antiviral agents have been reported to help prevent or reduce the effects of swine flu. They are zanamivir (Relenza) and oseltamivir (Tamiflu), both of which are also used to prevent or reduce influenza A and B symptoms. These drugs should not be used indiscriminately, because viral resistance to them can and has occurred. Also, they are not recommended if the flu symptoms already have been present for 48 hours or more, although hospitalized patients may still be treated past the 48-hour guideline. Severe infections in some patients may require additional supportive measures such as ventilation support and treatment of other infections like pneumonia that can occur in patients with a severe flu infection. The CDC has suggested in their guidelines that pregnant females can be treated with the two antiviral agents.

On Dec. 22, 2014, the FDA approved the first new anti-influenza drug (for H1N1 and other influenza virus types) in 15 years, peramivir injection (Rapivab). It is approved for use in the following settings:

Diarrhea, skin infections, hallucinations, and/or altered behavior may occur as side effects of this drug.

    Adult patients for whom therapy with an intravenous (IV) medication is clinically appropriate, based upon one or more of the following reasons:
        The patient is not responding to either oral or inhaled antiviral therapy, or
        drug delivery by a route other than IV is not expected to be dependable or is not feasible, or
        the physician decides that IV therapy is appropriate due to other circumstances.
    Pediatric patients for whom an intravenous medication clinically appropriate because:
        The patient is not responding to either oral or inhaled antiviral therapy, or
        drug delivery by a route other than IV is not expected to be dependable or is not feasible.

No comments:

Post a Comment